Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Constr Build Mater ; 344: 128245, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2227143

ABSTRACT

Global public response to the COVID-19 (SARS-CoV-2) pandemic is highly focused on human health. However, conservationists have cautioned of unprecedented threats to the natural environment from a new type of non-biodegradable microplastic waste resulting from extensive use of disposable medical face masks (DMFMs). Thus, this waste must be recycled in an eco-friendly manner on an urgent basis. In this research, we developed a new environmentally friendly recycling technique using waste DMFMs in sustainable green concrete. More explicitly, a new fiber hybridization approach has been introduced in which two types of fibers namely DMFM fiber and basalt fiber (BF) were incorporated into fiber reinforced recycled aggregate concrete (FRAC). The volume fractions of DMFM fiber were 0%, 0.1%, and 0.2% and the volume fractions of BF were 0%, 0.25%, and 0.5%. In addition, two mineral admixtures (fly ash and ground granulated blast furnace slag) were also used. Test results indicated increase of approximately 12% in compressive strength, 26% in split tensile strength, and 60% in flexural strength of FRAC containing hybrid fibers and mineral admixtures. The density and ultra-sonic pulse velocity (UPV) of DMFM fiber- and BF-modified FRAC ranged from 2406-2433 kg/m3 and 4502-4541 m/s, respectively, which meets structural concrete requirements. The water absorption rate gradually increased with an increase in the volume fractions of fibers but remained within the allowable water absorption limit for construction materials. Lastly, the microstructure investigation indicated excellent concrete quality, improved interfacial transition zones (ITZs), and good compatibility of host concrete matrix with both DMFM fiber and BF that correlates well with the experimental results reported in this study.

2.
Energies ; 15(15):5716, 2022.
Article in English | ProQuest Central | ID: covidwho-1993966

ABSTRACT

Carbon dioxide (CO2) has reached a higher level of emissions in the last decades, and as it is widely known, CO2 is responsible for numerous environmental problems, such as climate change. Thus, there is a great need for the application of CO2 capture and storage, as well as of CO2 utilization technologies (CCUS). This review article focuses on summarizing the current CCUS state-of-the-art methods used in Europe. Special emphasis has been given to mineralization methods/technologies, especially in basalts and sandstones, which are considered to be suitable for CO2 mineralization. Furthermore, a questionnaire survey was also carried out in order to investigate how informed about CO2 issues European citizens are, as well as whether their background is relative to their positive or negative opinion about the establishment of CCUS technologies in their countries. In addition, social acceptance by the community requires contact with citizens and stakeholders, as well as ensuring mutual trust through open communication and the opportunity to participate as early as possible in the development of actions and projects related to CO2 capture and storage, at all appropriate levels of government internationally, as citizens need to understand the benefits from such new technologies, from the local to the international level.

SELECTION OF CITATIONS
SEARCH DETAIL